
Frontend Performance:
Illusions & browser

rendering
Manuel Garcia
d.org/user/213194

http://drupal.org/user/213194

The current situation

80-90% of the end-user response time is spent on the

frontend

http://www.stevesouders.com/blog/2012/02/10/the-performance-golden-rule/

http://www.stevesouders.com/blog/2012/02/10/the-performance-golden-rule/
http://www.stevesouders.com/blog/2012/02/10/the-performance-golden-rule/

The current situation

80-90% of the end-user response time is spent on the

frontend

But frontenders are not to blame for ALL of it.

The current situation

source: @jerontjepkema

The current situation

source: @jerontjepkema

How it works

source: @jerontjepkema
http://www.slideshare.net/MeasureWorks/measureworks-why-people-hate-to-wait-for-your-website-to-load-and-how-to-fix-that

they

http://www.slideshare.net/MeasureWorks/measureworks-why-people-hate-to-wait-for-your-website-to-load-and-how-to-fix-that
http://www.slideshare.net/MeasureWorks/measureworks-why-people-hate-to-wait-for-your-website-to-load-and-how-to-fix-that

So...

Not every second wasted waiting on the browser is the

frontenders fault.

Latency is a big bottleneck, especially on mobile.

What I won’t be covering:
Anything that happens on the server (gzip, varnish, memcache etc).

Anything that happens from the server to the browser.

What I will cover:
Anything that happens after the browser gets the first packet.

Outline

Brief explanation of how browsers make sense of and render our mess.

The path to the first paint - why it is important and how to get there faster.

Rendering performance - how not to shoot yourself in the foot.

Drupal - the current situation

The browser

What the browser does

Starts receiving data. First packet is about 14K.

Parses the HTML and constructs the DOM.

Starts downloading assets (images, css, js) - in the order as

they come in the HTML source code.

Parses CSS and constructs the CSSOM.

Constructs the Render Tree (DOM + CSSOM)

Calculates Layout (size & position)

Paints & composites the layers.

What the browser does

HTML - Source optimization

What the browser does

HTML - Source optimization
Prioritize content delivery - source order. (Serve first what

matters to the user)

What the browser does

HTML - Source optimization
Prioritize content delivery - source order. (Serve first what

matters to the user)

Limit and minimize assets to download (HTTP requests)

What the browser does

HTML - Source optimization
Prioritize content delivery - source order. (Serve first what

matters to the user)

Limit and minimize assets to download (HTTP requests)

Keep the number of DOM elements under control. (Divitis)

-

What the browser does

Optimizing CSSOM construction

What the browser does

Optimizing CSSOM construction

External stylesheets block rendering.

What the browser does

Optimizing CSSOM construction

External stylesheets block rendering.

Serve CSS as early as possible (in <head>)

What the browser does

Optimizing CSSOM construction

External stylesheets block rendering.

Serve CSS as early as possible (in <head>)

Avoid the use of inefficient CSS selectors (body *, #footer

h3)

What the browser does

Optimizing CSSOM construction

External stylesheets block rendering.

Serve CSS as early as possible (in <head>)

Avoid the use of inefficient CSS selectors (body *, #footer

h3)

Remove unused CSS rules. Cleanup!

-

What the browser does

Optimizing CSSOM construction - CSS selectors

Browser engines evaluate each rule from right to left,

starting from the rightmost selector (called the "key") and

moving through each selector until it finds a match or

discards the rule.

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS

What the browser does

Optimizing CSSOM construction - CSS selectors
Avoid a universal key selector: * Allow elements to inherit from

ancestors, or use a class to apply a style to multiple elements.

What the browser does

Optimizing CSSOM construction - CSS selectors
Avoid a universal key selector: * Allow elements to inherit from

ancestors, or use a class to apply a style to multiple elements.

Make your rules as specific as possible. Prefer class and ID

selectors over tag selectors.

What the browser does

Optimizing CSSOM construction - CSS selectors
Avoid a universal key selector: * Allow elements to inherit from

ancestors, or use a class to apply a style to multiple elements.

Make your rules as specific as possible. Prefer class and ID

selectors over tag selectors.

Remove redundant qualifiers.
ID selectors qualified by class and/or tag selectors
Class selectors qualified by tag selectors

What the browser does

Optimizing CSSOM construction - CSS selectors
Avoid a universal key selector: * Allow elements to inherit from

ancestors, or use a class to apply a style to multiple elements.

Make your rules as specific as possible. Prefer class and ID

selectors over tag selectors.

Remove redundant qualifiers.
ID selectors qualified by class and/or tag selectors
Class selectors qualified by tag selectors

4. Use class selectors instead of descendant selectors.

What the browser does

And what about Javascript?

What the browser does

And what about Javascript?

Because it can change the DOM and the CSSDOM, when the browser sees a

<script> tag it will block downloading of other assets until the js file has been

downloaded and executed.

What the browser does

source: (Building Faster Websites: Crash Course on Web Performance, Fluent 2013)

http://www.igvita.com/slides/2013/fluent-perfcourse.pdf

What the browser does

Javascript:
Avoid it if not necessary.

What the browser does

Javascript:
Avoid it if not necessary.

Inline it in <head> if necessary for above the fold, if it is small, and you are

NOT changing the DOM or CSSOM.

What the browser does

Javascript:
Avoid it if not necessary.

Inline it in <head> if necessary for above the fold, if it is small, and you are

NOT changing the DOM or CSSOM.

Normally just place it at the bottom of the page.

What the browser does

Javascript:
Avoid it if not necessary.

Inline it in <head> if necessary for above the fold, if it is small, and you are

NOT changing the DOM or CSSOM.

Normally just place it at the bottom of the page.

And/or defer it: <script async src="progressively-enhancing.js">

-

The path to first paint

t

The path to first paint

Make it here fast
Make it count!

The path to first paint
It’s what your users first see.
It’s what the user is stuck with on mobile while waiting to load your 10^6 assets.

First paint should be a styled version without JS of your
website.

It should be functional, which is especially important on
slow/unstable connections and old devices. Impacts UX!

The fastest first paint would be a flash of unstyled content, if CSS is placed at the end of the page.

If the browser has the page title, and shows white screen for seconds long, you have work to do.

The path to first paint

source: @jerontjepkema
http://www.slideshare.net/MeasureWorks/measureworks-why-people-hate-to-wait-for-...

http://www.slideshare.net/MeasureWorks/measureworks-why-people-hate-to-wait-for-your-website-to-load-and-how-to-fix-that
http://www.slideshare.net/MeasureWorks/measureworks-why-people-hate-to-wait-for-your-website-to-load-and-how-to-fix-that

The path to first paint

How to avoid delaying the first paint
1. Do NOT put external JS in the header.

The path to first paint

How to avoid delaying the first paint
1. Do NOT put external JS in the header.

2. Prioritize delivery of critical content & assets.

The path to first paint

How to avoid delaying the first paint
1. Do NOT put external JS in the header.

2. Prioritize delivery of critical content & assets.

3. Minimize the number of assets to download (reduces latency impact).

The path to first paint

How to avoid delaying the first paint
1. Do NOT put external JS in the header.

2. Prioritize delivery of critical content & assets.

3. Minimize the number of assets to download (reduces latency impact).

4. Minimize the size of assets to download.

The path to first paint

How to avoid delaying the first paint
1. Do NOT put external JS in the header.

2. Prioritize delivery of critical content & assets.

3. Minimize the number of assets to download (reduces latency impact).

4. Minimize the size of assets to download.

5. Optimize DOM generation.

The path to first paint

How to avoid delaying the first paint
1. Do NOT put external JS in the header

2. Prioritize delivery of critical content & assets

3. Minimize the number of assets to download (reduces latency impact).

4. Minimize the size of assets to download.

5. Optimize DOM generation.

6. Optimize CSSOM generation.

The path to first paint

How to avoid delaying the first paint
1. Do NOT put external JS in the header

2. Prioritize delivery of critical content & assets

3. Minimize the number of assets to download (reduces latency impact).

4. Minimize the size of assets to download.

5. Optimize DOM generation.

6. Optimize CSSOM generation.

7. Put Ads and other 3rd party nastiness as low in the source code as

possible.

The path to first paint
Already useful / useable

View full test: http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%
3A0&thumbSize=150&ival=100&end=full

Website tested: www.deotramanera.co (Drupal 7)

http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%3A0&thumbSize=150&ival=100&end=full
http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%3A0&thumbSize=150&ival=100&end=full
http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%3A0&thumbSize=150&ival=100&end=full
http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%3A0&thumbSize=150&ival=100&end=full
http://www.deotramanera.co

The path to first paint
BONUS: rendering
performance++

View full test: http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%
3A0&thumbSize=150&ival=100&end=full

Website tested: www.deotramanera.co (Drupal 7)

http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%3A0&thumbSize=150&ival=100&end=full
http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%3A0&thumbSize=150&ival=100&end=full
http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%3A0&thumbSize=150&ival=100&end=full
http://www.webpagetest.org/video/compare.php?tests=140515_0K_NNE-r%3A1-c%3A0&thumbSize=150&ival=100&end=full
http://www.deotramanera.co

The path to first paint

Some general recommendations
● First rendered frame should contain element positioning and dimensions.

● Style with disabled JS, as if it was ready to be used (Bonus: Your site will

not crumble when your JS breaks.) Use NoScript or similar.

● The browser uses your CSS, not your SASS file. Try not to nest too much.

https://addons.mozilla.org/en-US/firefox/addon/noscript/

The path to first paint

Some general recommendations
● First rendered frame should contain element positioning and dimensions.

● Style with disabled JS, as if it was ready to be used (Bonus: Your site will

not crumble when your JS breaks.) Use NoScript or similar.

● The browser uses your CSS, not your SASS file. Try not to nest too much.

Dangers to our render times outside our control:
● Ads - Get them out of the first paint path. They should not hurt UX.

● Bad content writing habits (too many iframes, embedded crap) - educate

your content creators and/or remove the tags through input filters.

https://addons.mozilla.org/en-US/firefox/addon/noscript/

Rendering performance

Rendering performance

The ability for the browser to render composited images fast enough so that it can
actually give you at least 25 fps while using the site.

You put effort into first paint, do not throw it all away after the fact.

Keep your site snappy to use!

Rendering performance
The ability for the browser to render composited images fast enough so that it can
actually give you at least 25 fps while using the site.

You put effort into first paint, do not throw it all away after the fact.

Keep your site snappy to use!

What hurts the render pipeline?

● Things that invalidate the DOM

Rendering performance
The ability for the browser to render composited images fast enough so that it can
actually give you at least 25 fps while using the site.

You put effort into first paint, do not throw it all away after the fact.

Keep your site snappy to use!

What hurts the render pipeline?

● Things that invalidate the DOM
● Things that invalidate the CSSOM

Rendering performance
The ability for the browser to render composited images fast enough so that it can
actually give you at least 25 fps while using the site.

You put effort into first paint, do not throw it all away after the fact.

Keep your site snappy to use!

What hurts the render pipeline?

● Things that invalidate the DOM
● Things that invalidate the CSSOM
● JS animations (use requestAnimationFrame, not jQuery.animate)
● Flash
● Ads
● ...

Rendering performance

Things that hurt the render pipeline (in-app):

● Adding/removing/changing HTML elements.
● Adding/removing CSS classes, adding inline styles.
● Showing / hiding elements.

These cause the browser to invalidate the render tree / layout. It means doing a bunch of expensive
things, and if the recalculation gets big and/or gets very frequent, you could lose frames, which results in
shuttering etc.

If possible, provide the markup for your JS goodies in the original source code.

If you get the first paint right,
you have most of the job done,

don’t mess things up!

Drupal

Drupal

Getting Drupal (7) to render fast

Minifying and aggregation of CSS and JS:
● Advanced CSS/JS Aggregation (more features)
● Speedy (minified versions of core JavaScript)
● Simple aggregation (reduces the number of aggregated files)

https://drupal.org/project/advagg
https://drupal.org/project/advagg
https://drupal.org/project/speedy
https://drupal.org/project/speedy
https://drupal.org/project/simple_aggregation
https://drupal.org/project/simple_aggregation

Drupal

Getting Drupal (7) to render fast

Minifying and aggregation of CSS and JS:
● Advanced CSS/JS Aggregation (more features)
● Speedy (minified versions of core JavaScript)
● Simple aggregation (reduces the number of aggregated files)

Reduce the number of DOM elements:
● Fences (leaner markup for fields)
● Entity view modes
● Display Suite
● Optimize your page.tpl, panels tpls, etc

Use the minimum number of elements necessary

https://drupal.org/project/advagg
https://drupal.org/project/advagg
https://drupal.org/project/speedy
https://drupal.org/project/speedy
https://drupal.org/project/simple_aggregation
https://drupal.org/project/simple_aggregation
https://drupal.org/project/fences
https://drupal.org/project/fences
https://drupal.org/project/entity_view_mode
https://drupal.org/project/entity_view_mode
https://drupal.org/project/ds
https://drupal.org/project/ds

Drupal

Getting Drupal (7) to render fast

Reduce the amount of CSS
/**
 * Implement hook_css_alter().
 */
function MYTHEME_css_alter(&$css) {
 // Remove a single css file.
 unset($css[drupal_get_path('module', 'system') . '/defaults.css']);
}

Drupal

Getting Drupal (7) to render fast

Reduce the amount of CSS
/**
 * Implement hook_css_alter().
 */
function MYTHEME_css_alter(&$css) {
 // remove all core css files
 foreach ($css as $key => $file) {

if (preg_match('/^modules/', $key)) {
 unset($css[$key]);

}
 }
}

Drupal

Getting Drupal (7) to render fast

Reduce the amount of CSS
/**
 * Implement hook_css_alter().
 */
function MYTHEME_css_alter(&$css) {
 // Remove all but my theme's css files
 $theme_path = drupal_get_path('theme', 'MYTHEME');
 $string_match = '/^'. str_replace('/', '\/', $theme_path) .'/';

 foreach ($css as $key => $file) {
if (!preg_match($string_match, $key)) {

 unset($css[$key]);
}

 }
}

Drupal

Getting Drupal (7) to render fast

async Javascript (D7, done in D8!):

Needs backport: #1140356 OR #1664602

https://drupal.org/node/1140356
https://drupal.org/node/1664602

Drupal

Getting Drupal (7) to render fast

async Javascript (D7, done in D8!):

Needs backport: #1140356 OR #1664602

● advagg 7.x-2.6 does it without need to patch core

● aloha does it in template.php (a bit nasty)

https://drupal.org/node/1140356
https://drupal.org/node/1664602
http://drupal.org/project/advagg
http://drupal.org/project/advagg
https://drupal.org/project/aloha
https://drupal.org/project/aloha

Drupal

Getting Drupal (7) to render fast

async Javascript (D7, done in D8!):

aloha does it in hook_process_html():

function aloha_process_html(&$variables) {
 if (strpos($variables['scripts'], '/lib/aloha.js') !== FALSE) {

$variables['scripts'] = preg_replace('/(\/lib\/aloha\.js[^"]*["])
/', '$1 data-aloha-defer-init="true"', $variables['scripts'], 1);
 }
}

Drupal

Getting Drupal (7) to render fast

Moving all JS to the footer:

/**
 * Implements hook_js_alter().
 */
function MYTHEME_js_alter(&&javascript) {
 // Move all JS to the footer.
 foreach ($javascript as $name => $script) {

$javascript[$name]['scope'] = 'footer';
 }
 // Forces Modernizr to header if the module is enabled.
 if (module_exists('modernizer')) {

$javascript[modernizer_get_path()]['scope'] = 'header';
 }
}

Drupal

Getting Drupal (7) to render fast

Getting rid of ALL Javascript:
/**
 * Implements hook_js_alter().
 */
function MYTHEME_js_alter(&$javascript) {
 // Remove all JS
 $javascript = array(); // 0_o
}

Drupal

And what about Drupal 8? (pull from 16-mar-2014)

Out of the box, front page:

Drupal

And what about Drupal 8? (pull from 16-mar-2014)

Out of the box, front page:

● CSS & JS aggregation on by default - WIN!

Drupal

And what about Drupal 8? (pull from 16-mar-2014)

Out of the box, front page:

● CSS & JS aggregation on by default - WIN!
● 4 CSS files for anonymous, 7 for admin. CSS in <head>.

Drupal

And what about Drupal 8? (pull from 16-mar-2014)

Out of the box, front page:

● CSS & JS aggregation on by default - WIN!
● 4 CSS files for anonymous, 7 for admin. CSS in <head>.
● JS is in <head> & not async by default :(

Drupal

And what about Drupal 8? (pull from 16-mar-2014)

Out of the box, front page:

● CSS & JS aggregation on by default - WIN!
● 4 CSS files for anonymous, 7 for admin. CSS in <head>.
● JS is in <head> & not async by default :(
● First paint at ~400ms for admin, ~200ms for anonymous.

Drupal

And what about Drupal 8? (pull from 16-mar-2014)

Out of the box, front page:

● CSS & JS aggregation on by default - WIN!
● 4 CSS files for anonymous, 7 for admin. CSS in <head>.
● JS is in <head> & not async by default :(
● First paint at ~400ms for admin, ~200ms for anonymous.

○ With JS at the bottom, first paint as admin goes down
to ~200ms!

Drupal

And what about Drupal 8? (pull from 16-mar-2014)

Out of the box, front page:

● CSS & JS aggregation on by default - WIN!
● 4 CSS files for anonymous, 7 for admin. CSS in <head>.
● JS is in <head> & not async by default :(
● First paint at ~400ms for admin, ~200ms for anonymous.

○ With JS at the bottom, first paint as admin goes down
to ~200ms!

● In-app paint time is 2-5ms for anonymous, 4-6ms for
admin - pretty good, but its an empty page ;)

Drupal

And what about Drupal 8?

It is a lot better than 7.x
We only provide the JS needed for each page - WIN!
Work’s still being done - tag: frontend performance

Get involved:
● [Meta] selectors clean-up #1574470
● jQuery and Drupal JavaScript libraries and settings are

output even when no JS is added to the page #1279226
● [META] Improving CSS and JS preprocessing #1490312

https://drupal.org/project/issues/search/drupal?assigned=&submitted=&project_issue_followers=&version[]=8.x&issue_tags_op=%3D&issue_tags=frontend+performance
https://drupal.org/node/1574470
https://drupal.org/node/1279226
https://drupal.org/node/1490312

Tools & Resources
Tools
● Webpagetest: http://www.webpagetest.org/
● Firefox & Chrome dev tools
● Google PageSpeed insights: http://developers.google.

com/speed/pagespeed/insights/

Further reading, sources and resources
● Performance profiling with the Timeline: https://developer.chrome.com/devtools/docs/timeline
● https://developers.google.com/speed/
● http://www.stevesouders.com/blog/
● https://www.igvita.com/
● On Layout & Web Performance http://www.kellegous.com/j/2013/01/26/layout-performance/
● Writing efficient CSS https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS
● Best Practices for Speeding Up Your Web Site https://developer.yahoo.com/performance/rules.html
● Profiling CSS for fun and profit http://perfectionkills.com/profiling-css-for-fun-and-profit-optimization-notes/

http://www.webpagetest.org/
http://developers.google.com/speed/pagespeed/insights/
http://developers.google.com/speed/pagespeed/insights/
http://developers.google.com/speed/pagespeed/insights/
https://developer.chrome.com/devtools/docs/timeline
https://developers.google.com/speed/
https://developers.google.com/speed/
http://www.stevesouders.com/blog/
http://www.stevesouders.com/blog/
https://www.igvita.com/
https://www.igvita.com/
http://www.kellegous.com/j/2013/01/26/layout-performance/
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS
https://developer.yahoo.com/performance/rules.html
http://perfectionkills.com/profiling-css-for-fun-and-profit-optimization-notes/

Thanks!

Manuel Garcia
d.org/user/213194

http://drupal.org/user/213194

